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Cancer Vaccine

Abstract

Prevention is the most effective strategy for combating cancer, making it a priority over reactive treatments. The majority of 
cancer vaccines primarily stimulate T and B cells within the adaptive immune system. Nevertheless, like embryos, tumors orig-
inate from a single cell and often evade rejection by the innate immune response. This immune evasion is akin to mechanisms 
seen in pregnancy, where immune-suppressive monocytes play a crucial role in establishing tolerance. Oncofetal alpha-feto-
protein (AFP) facilitates nutrient delivery during pregnancy and in tumor growth via its receptor (AFPR). AFPR is also present 
in myeloid-derived suppressor cells (MDSCs), which are elevated in the tumor microenvironment. AFP and AFP-binding nu-
trients can skew the immune response toward tolerance. Conversely, depleting AFPR-positive monocytes can unleash natural 
killer (NK) cells, CD8+ T cells, and M1 macrophages—essential components for targeting cancer cells—thereby improving 
the lymphocyte-to-monocyte ratio (LMR), a recognized prognostic marker. Additionally, AFP-toxin conjugates represent a 
promising targeted chemotherapy approach and hold potential as vaccines for treating both primary and metastatic cancers.
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Introduction
The innate immune system serves as the first line of defense 
against cancer, while adaptive immunity, involving T and B 
cells, plays a critical role in later stages of tumor progression. 
Within the Tumor Microenvironment (TME), key innate im-
mune cells such as myeloid-derived suppressor cells (MD-
SCs), natural killer (NK) cells, macrophages, dendritic cells 
(DCs), and neutrophils are key players [1]. These cells can 
either inhibit or promote tumor growth through the secretion 
of various cytokines and chemokines, significantly influencing 
tumor development. Targeting innate immune pathways offers 
the potential to reshape the TME, suppress tumor growth, and 
advance cancer immunotherapy [2].

MDSCs are particularly important as regulators of immune 
responses in both pregnancy and cancer [3]. A tumor can be 
conceptualized as a "mutant embryo" [4] suggesting that the 
immune mechanisms that prevent pregnancy could inform the 
design of effective cancer vaccines. Depleting MDSCs can ac-
tivate both innate and adaptive immunity, improving the Lym-
phocyte-to-Monocyte Ratio (LMR), which is associated with 
favorable cancer outcomes [5].

Oncofetal Alpha-Fetoprotein (AFP) plays a dual role by de-
livering nutrients to AFP receptor (AFPR)-positive cells, in-
cluding both embryonic and MDSC populations, thereby sup-

pressing maternal immune responses during pregnancy and 
promoting tumor immune evasion [6]. AFP-toxin conjugates 
have the potential to deplete MDSCs while mobilizing the im-
mune system to target cancer cells. Given that many cancer 
cells express AFPR [7], these conjugates can function as tar-
geted immuno- and chemotherapies, offering effective treat-
ment with minimal toxicity [8,9]. Furthermore, AFP-toxin 
conjugates may serve as vaccines to prevent the onset of early-
stage cancers and spread of metastases.

Discussion
Given that one in two people in developed countries will be 
diagnosed with cancer in their lifetime, prioritizing cancer pre-
vention is essential. An ideal vaccine would not only generate 
a specific response from the adaptive immune system but also 
address multiple tumor types by reversing innate immune sup-
pression and activating adaptive immunity.

MDSCs are crucial in pregnancy and cancer 
MDSCs play a crucial role in successful pregnancy by regu-
lating maternal-fetal tolerance, facilitating implantation, and 
supporting fetal survival [10,11]. While MDSCs suppress the 
immune response to prevent embryo rejection, their depletion 
can enhance the cytotoxicity of decidual NK cells, potentially 
leading to embryo rejection [12]. The mechanisms of immune 
tolerance generated by MDSCs in both pregnancy and can-
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cer are strikingly similar, suggesting that targeting these cells 
could help prevent cancer progression and metastasis.

MDSCs arise from hematopoietic stem cells and can differenti-
ate into monocytic (M-MDSCs) and granulocytic (G-MDSCs 
or PMN-MDSCs) subtypes. These cells are highly conserved 
across mammals, maintaining similar regulatory programs and 
functions. Under normal physiological conditions, MDSCs ac-
count for less than 1% of peripheral blood mononuclear cells 
(PBMCs). However, they become prominent in conditions 
such as chronic inflammation, cancer, autoimmune diseases 
(AD), allergies, and infections, where normal myelopoiesis is 
disrupted, leading to increased MDSC production. Generated 
in the bone marrow, MDSCs represent a transitional stage in 
the differentiation of suppressive immune cells [13].

MDSCs contribute to cancer progression and metastasis 
through various mechanisms: they inhibit T-cell proliferation, 
impair NK cell function, induce regulatory T cell (Treg) for-
mation, polarize macrophages to the M2 phenotype, create a 
tolerogenic environment, and promote angiogenesis [14-16]. 
MDSCs are a major obstacle to cancer immunotherapies and 
targeting them therapeutically could improve efficacy of im-
munotherapy [17].

As immature monocytes, MDSCs exhibit low antigen expres-
sion, complicating efforts to develop therapies that specifically 
target these cells without affecting others [18]. Two types of 
AFPRs have been described on human monocytes [19], with 
Dr. Belyaev notably discovering AFPRs on M-MDSCs [20]. 
He proposed that MDSCs are primary tumor-induced negative 
regulators of cancer immunity and explored potential methods 
for their elimination using AFP [21]. Research has shown that 
AFP can directly activate MDSCs [22] and influence their dif-
ferentiation [23]. Furthermore, AFP-daunorubicin conjugate 
has been demonstrated to reduce MDSC numbers from over 
1% to less than 1% [20].

Cancer stem cells
Remarkably, even though a mother and embryo are only par-
tially related—or not at all in surrogate pregnancies—the ma-
ternal immune system tolerates the "alien" embryo for months, 
similar to how cancer cells can also evade immune detection 
and grow for years. This striking similarity underscores the 
parallels in immune responses between pregnancy and cancer 
[24].
Both embryos and cancer cells originate from a single cell, 
and like many tissues, tumors consist of functional cell pop-
ulations, including stem cells, transit-amplifying cells, and 
mature cells. Cancer Stem Cells (CSCs) represent a subset 
of cancer cells with characteristics akin to normal stem cells, 
capable of generating all cell types within a tumor. CSCs are 
often responsible for metastasis and can suppress the immune 
response through various mechanisms, frequently involving 
myeloid cells [25,26]. Approximately 73% of current CSC sur-
face markers are shared with embryonic or adult stem cells, 
and these markers are rarely expressed in normal tissue [27].
Targeting CSCs could potentially lead to complete cancer 
eradication [28]. Certain agents, for instance, polyene mac-
rolides like nystatin and amphotericin B, have been shown to 
effectively target CSCs [29]. Thapsigargin (TG) has also been 
shown to selectively target highly resistant CSCs [30]. The ef-
fectiveness of these agents can be further enhanced through 
targeted delivery. 

Moreover, CSCs may exploit the autocrine AFP-mediated nu-
trient supply typically utilized by embryonic cells. Notably, 
AFP has been shown to increase the cytotoxicity of agents such 
as dioxin by factors of 200 to 1400 [31], highlighting AFP po-
tential role in cancer therapy.

AFP delivers ligands through AFPR-mediated endocytosis
AFP is produced and secreted during fetal development by 
liver hepatocytes, the visceral endoderm of the yolk sac, and, 
to a lesser extent, by the embryonic intestine and kidneys. AFP 
is used as both a pregnancy and tumor marker [32]. Often re-
ferred to as "embryo albumin," it performs a similar transport 
function during pregnancy and virtually disappears after birth.
Placental cells can both secrete and absorb AFP via its recep-
tor, AFPR [33]. Secreted AFP crosses the placenta to extract 
nutrients from the mother's bloodstream and then delivers them 
to the embryo. While AFP concentrations in maternal blood 
are typically below 200 ng/ml, albumin levels are much higher 
ranging from 35 to 50 mg/ml. Nevertheless, AFP surpasses al-
bumin in its ability to bind certain nutrients, such as polyun-
saturated fatty acids (PUFAs) [34]. AFP possesses a binding 
cavity capable of accommodating 1-2 molecules of PUFAs, as 
well as other compounds such as diethylstilbestrol [35] and di-
oxin [31]. Laboratory studies have identified saturated fatty ac-
ids, particularly palmitic acid (C16:0) and stearic acid (C18:0), 
as the primary fatty acids bound to AFP [36]. The transport 
function of AFP has been extensively documented in the lit-
erature [37-40].

AFP-mediated immunosuppression 
 The primary mechanism of AFP-mediated immunosuppres-
sion involves AFP-mediated transport of lipid ligands, which 
modulate cellular metabolism and are converted into signaling 
molecules [6]. This immuno-metabolic effect is particularly 
pronounced when AFP delivers PUFAs [41]. For instance, 
omega-3 docosahexaenoic acid (DHA) bound to AFP pro-
motes anti-inflammatory effects, while omega-6 arachidonic 
acid contributes to pro-inflammatory responses. Tumor-de-
rived AFP (tAFP) directly activates NK cells, leading to their 
subsequent apoptosis, and induces immune and metabolic dys-
function in monocyte-derived DCs [42,43]. 

Several published studies support the use of recombinant AFP 
for AD treatments [44,45]. Furthermore, the safety of such ap-
proach is strongly supported by the fact that AFP levels can be 
elevated in healthy individuals with no negative consequences 
[46].  
The immune suppressive activity of MDSCs is stimulated 
when they endocytose AFP with its payload [47]. These cells 
are considered critical targets for treatment of cancers and me-
tastasis [48]. Depleting MDSCs can unleash NK cells to target 
CSCs and metastatic cells effectively [49].

MDSCs in breast cancer
Breast cancer is the leading cause of cancer-related death 
among women worldwide. The application of cancer vaccines 
in breast cancer as monotherapy could not induce satisfying 
anti-tumor immunity [50]. There is a notable correlation be-
tween MDSCs levels and various factors such as inflamma-
tion, immune suppression, malnutrition, and poor prognosis in 
breast cancer patients. Specifically, patients with MDSC lev-
els exceeding 1% of total PBMCs exhibit significantly shorter 
overall survival compared to those with MDSC levels below 
1% [51] (Figure 1).
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Figure 1: MDSC levels in patients with stage IV breast cancer 
and their overall survival. MDSC, myeloid-derived suppres-
sor cell; PBMC, peripheral blood mononuclear cells (Adapt-

ed from [51]).

In murine models of triple-negative breast cancer, MDSCs 
have been shown to support tumor growth. For example, trans-
planting MDSCs from donor mice can effectively counteract 
the protective effects of calorie restriction against primary 
tumor growth, although this does not impact lung metastasis 
in the recipient animals [52]. MDSCs play a significant role 
in tumor progression in breast cancer and are emerging as an 
important therapeutic target [53]. Additionally, breast cancer 
cells express AFPRs, which can be targeted using AFP-toxin 
conjugates [54]. This suggests that AFP-toxin conjugates hold 
promise as a potential breast cancer vaccine.

AFP-toxin conjugates
Amphotericin B (4.2-7.0 mg) has been administered in com-
bination with 0.075-0.15 mg AFP once every 3 days for one 
month and had produced a response in 6 out of 8 terminal pa-
tients with different cancers [55]. With a half-life of 4-5 days, 
AFP functions as a shuttle, delivering numerous amphoteri-
cin B molecules (half-life of 48 hours) to the AFPR-positive 
cells. Other drugs, such as paclitaxel [56] and warfarin [57], 
also bind to AFP and could potentially serve as targeted cancer 
therapeutics using AFP as a shuttle. 

Covalent AFP-toxin conjugates are currently being explored 
as potential cancer therapies [37-40]. The AFP-maytansine 
conjugate, known as ACT-903, represents the most advanced 
development in this area, featuring a molar ratio of 1:5.96 [8, 
9]. This conjugate offers several advantages over other MD-
SC-depleting strategies, as it not only targets MDSCs but also 
has dual targeting capabilities for a wide range of cancers that 
express AFPR. Covalent conjugates like ACT-903 are stable 
in the bloodstream, ensuring improved safety and prolonged 
efficacy. ACT-903 marks a significant advancement in cancer 
treatment strategies, as it simultaneously enhances the immune 
response by eliminating MDSCs in the TME, improves the 
LMR, and directly targets cancer cells [58]. This innovative 
approach functions not only as a cancer therapeutic but also as 
a potential cancer vaccine.

MDSCs are “what they eat”
MDSCs are sensitive to various agents [59, 60] and possess a 
double-edged nature. They can support a healthy state in con-
texts such as pregnancy, tissue regeneration, obesity, aging, 
and organ transplantation, but they can also impair immune 
responses in cancer and various bacterial and viral infections 

[61]. While MDSCs have protective roles in AD, allergies, and 
organ transplantation, they play a crucial negative role in the 
progression of many cancers [62].

Certain cancer cells and PMBCs are known to secrete AFP and 
reabsorb it with its payload through AFPR-mediated endocy-
tosis, facilitating tumor growth [63-65]. When AFP with its 
PUFA payload is taken by MDSCs, it results in promotion of 
the expansion of these cells [66]. AFP acts as a growth factor 
beneficial to the fetus by promoting cell growth and prolifera-
tion; however, it has the same effect on the growth and progres-
sion of disease in cancer patients [67]. This dual role has led to 
AFP being described as a double-edged sword [68].

Active ingredients used in traditional medicine can bind to 
AFP and modulate the metabolism and activity of MDSCs, 
suggesting that AFP bound to the appropriate ligands could 
be utilized in cancer treatments. For example, Arshad et al. 
showed that binding 1’-S-1’-acetoxychavicol acetate to AFP 
significantly potentiates its anti-cancer activity [69]. Thapsi-
gargin is another plant toxin being developed as an anti-cancer 
drug [70]. In vivo studies demonstrated that a dose of 0.15 mg/
kg of the AFP-TG complex rapidly reduced MDSCs but not 
tumor-associated macrophages (TAMs), leading to a complete 
tumor regression in 5 out of 6 mice by day 7 of treatment [71]. 
Embryo toxins and teratogens that have high binding affinity to 
AFP can potentially be used for cancer therapy [72, 73]. E.g., 
Mifepristone, typically used to induce an abortion, regulates 
macrophage-mediated NK cells function in the decidua [74]. 
It is also being investigated for its potential as a breast cancer 
treatment [75]. There is growing interest in using mifepristone 
in combination with AFP as a universal cancer vaccine, with 
the aim of benefiting all cancer patients, not just women [76].

Oral cancer vaccine
It is reasonable to speculate that oral administration of AFP 
can be effective in modulating the immune system. The main 
advantage of such approach is that oral administration of AFP 
does not require high purity, and a complex of AFP with its 
ligand can be administered with a high margin of safety. Fur-
thermore, it has been shown that gastrointestinal tract can facil-
itate the absorption of IgG-antigen complexes, albumin-ligand 
complexes [77], and likely AFP-ligand complexes. This would 
allow the AFP-toxin complex to pass through the gut and reach 
the intestinal lymph nodes, where it can deplete monocytes that 
endocytose AFP. Depleting these AFPR-positive monocytes 
would improve the LMR and enhance immune function both 
in the gut and systemically.

Studies with porcine AFP (pAFP) isolated from fetal pig se-
rum, which shares amino acid and three-dimensional structural 
similarities with human AFP [78] shown that it can bind 2.6 
moles of DHA and arachidonic acid (AA) (20:4, n-6) per mole 
of protein [79]. It has the capability to cross the epitheliocho-
rial placenta [80] and may also traverse enterocyte line in the 
gut. 

Oral administration of pAFP combined with AFP-binding tox-
ins has been evaluated in xenograft models. In these studies, 
tumor-bearing mice were administered pAFP complexes (1:2) 
containing agents such as atractyloside (ATR), TG, rotenone, 
betulinic acid, ajoene, tocotrienol, cholecalciferol, and pacli-
taxel by gavage. Tumor inhibition was observed, along with 
extended survival in the mice [4, 81].
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