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Abstract

Autism Spectrum Disorder includes a group of developmental disabilities characterized by patterns of delay and de-
viance in the development of social, communicative, cognitive skills and the presence of repetitive and stereotyped 
behaviors as well as restricted interests. Although the etiopathogenesis of autism has not yet been elucidated, past 
literature has highlighted an imbalance between glutamatergic and Gamma-Aminobutyric Acid (GABA)-ergic neu-
rotransmission. A cortical deficiency of GABA in young people with ASD has been reported. Endocannabinoids act 
in numerous synapses of the central nervous system, maintaining adequate synaptic homeostasis, preventing excess 
stimulation at the level of excitatory or inhibitory synapses. The endocannabinoid system appears to play an impor-
tant role in some clinical presentations of autism, such as socialization. Indeed, Autism Spectrum Disorder seems to 
be characterized by a hypo-functionality of the endocannabinoid system.
The present work aims to describe the current state of the art regarding the possible role of cannabinoids in the modu-
lation of the excitatory and inhibitory systems in individuals with ASD.
A literature search was conducted for relevant studies on PubMed database, concerning the randomized clinical trials 
on the modulating effect of excitatory and inhibitory cannabinoid systems in autism. 
Three eligible articles were found according to the purpose of the present study. The results of the three articles 
considered highlighted a cannabinoid-related increase in glutamate in subcortical regions and a decrease in cortical 
regions, both in subjects with and without Autism. CBD increased gamma-aminobutyric acid transmission in the 
subcortical regions of neurotypical subjects, while it decreased it in the same areas of the ASD group. Furthermore, 
Cannabinoid modulated low-frequency activity used as a measure of brain activity and functional connectivity in the 
brains of adults with autism spectrum disorder.
Data from the three fMRI studies demonstrated that CBD influences cortical and subcortical connectivity in an adult 
sample. This effect was notable only in the ASD group but not in the controls. However, further studies are needed to 
confirm the results obtained so far.
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Introduction
Autism Spectrum Disorder (ASD) includes a group of devel-
opmental disabilities characterized by patterns of delay and de-
viance in the development of social, communicative, cognitive 
skills and the presence of repetitive and stereotyped behaviors 
as well as restricted interests [1]. In addition to core symptoms, 
people with ASD often have numerous medical and psychi-
atric comorbidities that worsen the quality of life of patients 
and their caregivers [2]. Clinical features are accompanied by 
an atypical sensory experience present in up to approximately 
95% of people with ASD [3].

The clinical presentation can vary considerably over the years, 
depending on the characteristics of the person, the surrounding 
environment and above all the habilitation/rehabilitation inter-
ventions undertaken [4].

Although the etiopathogenesis of autism has not yet been elu-
cidated, the data in the literature agree that the causes of autism 
are multifactorial, including genetic, epigenetic, inflammatory, 
immunological and environmental factors [5-10].

More than one study has reported dysfunctional alterations in 
E/I neurotransmission in cortical neurons, using glutamatergic 
and dysfunctional GABAergic neurotransmission, and abnor-
mal levels of GABA concentrations in brain tissue or plasma 
(for extensive reviews see [11-15]). 

Different mechanisms could be responsible for E/I imbalance, 
such as alterations in genes encoding glutamatergic receptors 
or synaptic proteins [16,17]. Particularly, the role of neurexins, 
neuroligins and SHANK proteins, implicated in the formation 
and maintenance of excitatory and inhibitory synapses, has 
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been widely established in the pathogenesis of neurodevelop-
mental disorders [18-22].

Some recent studies have shown abnormalities of the GAB-
Aergic and glutamatergic pathways in the prefrontal cortex and 
Basal Ganglia (BG) regions, now proven to be crucial regions 
of the core signs and symptoms of ASD [23-26].

Past literature has proven that Endocannabinoid System (or 
Endogenous Cannabinoid System, ECS) functions as retro-
grade signal molecules in synapses, especially in glutamatergic 
and GABAergic synapses, preventing excess excitation or in-
hibition, respectively [27,28]. Moreover, the ECS can enhance 
GABAergic transmission and reduce glutamate transmission in 
different brain regions [29,30]. 

The ECS is a complex biological system implicated within 
the pharmacological effects of cannabis [31], neuronal plastic-
ity [32,33], postnatal development [34], pain sensation [35], 
emotionality [36], appetite [37], learning and memory [38]. It 
is also concerned with the homeostasis of the organism [39] 
through the modulation of more than one system such as the 
cardiovascular (CVS), central nervous (CNS), peripheral ner-
vous (SNP), endocrine, reproductive, immune and digestive 
systems [40,41]. 

The ECS includes three major components: endogenous can-
nabinoids (or endocannabinoids, eCBs), metabotropic recep-
tors and enzymes answerable for the synthesis and degradation 
of eCBs [42].

The most studied eCBs are N-arachidonylethanolamine (or 
anandamide, AEA) [43] and 2-arachidonylglycerol (2-AG) 
[44]. Cannabis contains more than 500 compounds and the 
most abundant are represented by ∆-9-tetrahydrocannabinol 
(THC), cannabidiol (CBD), flavonoids and terpenes [45]. Can-
nabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ9-THC) 
are the most intensively studied phytocannabinoids. In addi-
tion to eCBs, phytocannabinoids and synthetic derivative com-
pounds represent other substances that act as ligands for ECS 
receptors. 

THC has a similar affinity for both CB1 and CB2 receptors, 
but most of the psychoactive effects of THC are related to the 
activation of CB1 receptors [46]. Cannabidiol (CBD) does not 
have psychotropic properties, as recently confirmed [47]. CBD 
has a very low affinity for CB1 and CB2 receptors, and several 
results have suggested that CBD operates as a negative alloste-
ric modulator/inverse agonist in both CB1 and CB2 receptors 
[48-50]. 

There are other potentially therapeutic phytocannabinoids, 
which have been tested in pre-clinical studies, but not yet ex-
tensively in vivo and are represented by: ∆8-Tetrahydrocan-
nabinol [51], Cannabinol [52], Cannabigerol [53], Cannabi-
chromene [54], ∆9-Tetrahydrocannabivarin (∆ 9-THCV) [55] 
and Cannabidivarin (CBDV) [56].

The two main receptors of the ECS are the cannabinoid recep-
tor type 1 (CB1) and the cannabinoid receptor type 2 (CB2). 
The CB1 is expressed in both the peripheral and the central 
nervous systems such as in the hippocampus, cortical regions, 
basal ganglia (BG) and cerebellum. On the other hand, the CB2 
receptor is mostly expressed in peripheral cells and tissues of 

the immune system. Although the presence of CB2 in the brain 
is very low compared to CB1, CB2 appears to play a crucial 
role in macrophage/microglia functions [57]. Indeed, CB2 ex-
pression drastically increases in activated microglia and CB2 
activation decreases the production of pro-inflammatory mole-
cules [58]. Both of these receptors are coupled to the G protein 
signaling pathway [59]. 

The ECS appears to play an important role in some clinical 
presentations of autism as well as in the regulation of emo-
tional responses, behavioral reactivity, reciprocity, social play 
and social interaction [60]. Indeed, numerous murine studies 
have shown that the ECS plays a crucial role in the pathophysi-
ological mechanisms underlying ASD [61-63]. Human studies 
support growing evidence of ECS abnormalities in people with 
ASD [64-67]. 

Currently, only risperidone and aripiprazole are approved drugs 
for the treatment of irritability associated with ASD [68]. Due 
to the high incidence of adverse effects of conventional psy-
chotropic therapies [69], the use of phytocannabinoids could 
become an alternative therapeutic strategy in these situations 
[70].

In the literature, there is preclinical evidence to support the 
positive effects of the use of cannabinoids in balancing the 
pathological mechanisms of ASD [71-74] and ASD-like symp-
toms [75-78].

Cannabinoids are already being used for a wide range of condi-
tions such as multiple sclerosis, Tourette's syndrome, Parkin-
son's disease, epilepsy, glaucoma, nausea and pain [79], but 
clinical data on the use of cannabinoids in people with autism 
are still very limited. 

Materials and Methods
The present work aims to describe the current state of the art 
regarding the possible role of cannabinoids in the modulation 
of the excitatory and inhibitory systems in individuals with 
ASD.

A literature search was conducted for relevant studies using 
PubMed database concerning the randomized clinical trials us-
ing functional Magnetic Resonance Imaging (fMRI) or Mag-
netic Resonance Spectroscopy (MRS) on the modulating effect 
of cannabinoids on the excitatory and inhibitory systems in 
people with autism. 

Results and Discussion
Three eligible papers [80-82] were found according to the pur-
pose of the present study.

Over the years, technological progress has made it possible to 
measure the cerebral effects of psychotropic substances. fMRI 
has already been used in people with ASD, to study the brain 
effects of riluzole, propranolol and oxytocin during cognitive 
tasks [23,83,84]. MRS has been already used to determine al-
teration in E/I dynamics in BG and dorsomedial prefrontal cor-
tex (DMPFC) [24].

All three studies used a randomized double-blind, cross-over 
design. Two studies [80,81] acquired data following a single 
oral dose of 600 mg CBD or a matched placebo while one 
study utilized CBDV [82] (see Table 1).
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Two studies compared MRS measures of glutamate and GABA 
[81] and Glx (glutamate + glutamine) and GABA+ (GABA+ 
macromolecules) [82] levels in the BG and DMPFC in men 
with and without ASD.

Considering that differentiating the cognitive response to a 
task from normal brain activation can be challenging in peo-
ple with ASD [85,86], one study rightly used a resting state 
design (task-free) to examine the fractional amplitude of low-
frequency fluctuations (fALFF) as a measure of spontaneous 
regional brain activity [87]. Indeed, low-frequency oscillations 
appear to be important in synchronizing activity between brain 
regions [88].

All three studies taken into consideration show how cannabi-
noids shift both fALFF and FC [80] as well as the levels of 
excitatory and inhibitory neurotransmitters [81,82] in the liv-
ing adult human brain both in the ASD group and in the control 
group.
Two studies [81,82] showed no differences in baseline gluta-
mate and GABA levels in BG and DMPFC as evidenced by 
some MRS studies [23,24], but not all [89]. However, it should 
be noted that individual responses in autistic brains varied ac-
cording to baseline Glx levels. 

Changes in fALFF were more prominent in the ASD group 
and not significant in controls [80]. Furthermore, in ASD the 
shift in fALFF in the cerebellum was accompanied by diffuse 
changes in vermal FC with many of its subcortical and cortical 
targets. As suggested by the authors, CBD appears to ‘tune’ FC 
in a region or connection-specific manner. These data are sup-
ported by previous studies correlating levels of E/I cerebellar 
and cerebro-cerebellar FC in adolescents and adults with ASD 
[90].

The most important FC alterations were attributable to the 
vermis but not to the fusiform probably, as explained by the 
authors, due to reduced expression of GABA receptors [91], 
decreased levels of enzymes responsible for converting glu-
tamate to GABA, alterations of inhibitory Purkinje cells [92] 
and structural alterations in ASD [93,94], although data in the 
literature are conflicting [95,96].

Given the impairments [85,97] of functional spindle-shaped 
abnormalities in face processing [98] and the study evidence, 

one could hypothesize the use of CBD to improve the recogni-
tion of faces in ASD.

Regarding Glx, both people with ASD and neurotypicals re-
sponded to CBD in an overlapping manner [81]. On the other 
hand, CBD decreased GABA+ levels in the BG and (mark-
edly) in the DMPFC voxel of autistic adults, probably due to 
metabolic or genetic alterations of GABA receptors [92,99-
101]. Probably these results are explained by the ability of 
CBD to suppress the activity of prefrontal glutamatergic neu-
rons through the 5-HT1A receptors [102,103]. Furthermore, 
5-HT1a receptor dysfunction in ASD is now known [104]. 
These data support on the one hand the theory of E/I alteration 
in ASD and on the other the possible use of CBD as a thera-
peutic approach.

The cortical, sub-cortical, and thalamic connections of the BG 
appear to be important for the clinical presentation of the fea-
tures of the autism diagnosis [105-107].

CBDV induced an increase in BG Glx levels (left BG) in both 
groups. In contrast, CBDV had no impact on Glx in DMPFC, 
nor on GABA+ levels in either voxel [82]. Only in the ASD 
group, the drug-induced shift in Glx levels in BG was signifi-
cantly negatively correlated with baseline Glx value. 

Moreover, based on the basal levels of Glx, a different response 
was highlighted in subjects with ASD. Indeed, in autistic indi-
viduals with lower baseline Glx levels, CBDV increased Glx 
levels, while individuals with higher baseline Glx values ex-
perienced a decrease in Glx. From the data collected, CBDV 
seems to normalize the altered levels of Glx.

These effects could be explained by the binding of CBDV to 
TRP receptors coupled to pyramidal excitatory neurons high-
ly represented in BG as demonstrated by preclinical studies 
[108,109]. Furthermore, CBDV could modulate excitatory 
neurotransmission through the activation of microglial TRP re-
ceptors, a mechanism already known to increase extracellular 
vesicular shedding and subsequent glutamate release [110].

In our view, these findings appear important to clinicians in 
further differentiating subgroups within the autistic disorder 
spectrum in such a way as to make treatments increasingly in-
dividualized.

Table 1: Summary of studies.
Author Study 

Design
N. of 
p e o p l e 
w i t h 
ASD

N. of 
controls

T r e a t -
ment

Daily Dosage Main Outcomes

Pretzsch et al. 
2019 [80]

RCT
Crossover

17 17 CBD 600 mg/die single 
administration

CBD significantly increased 
fALFF in the cerebellar vermis 
with many of its subcortical and 
cortical targets in ASD group

Pretzsch et al. 
2019 [81]

RCT
Crossover

17 17 CBD 600 gm/die single 
administration

CBD modulates glutamate-GABA 
systems, but prefrontal-GABA 
systems respond differently in 
ASD group

Pretzsch et al. 
2019 [82]

RCT
Crossover

17 17 CBDV 600 gm/die single 
administration

CBDV modulates the glutamate-
GABA system in the BG but not in 
frontal regions in ASD group
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