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Abstract 

Ultrasound Elastography (USE) or Elastosonography is a non-insasive ultrasound-based imaging method used to assess tissue 
elasticity. The different types of ultrasounds elastography are distinguished on the basis of the basic mechanisms for estimating 
elasticity. In strain imaging, mechanical stress (manual compression or acoustic pulse) is applied to the tissue and the result-
ing differential strain is used to infer the elasticity, in shear wave imaging the shear wave velocity is used. Shear waves can 
be produced using a vibrating mechanical device, as in Transient Elastography (TE), or an Acoustic Radiation Force Impulse 
(ARFI), which can be highly focused, as in the point-SWE (p-SWE), or directed to multiple zones in a two-dimensional area, 
as in 2D-SWE. A general understanding of these principles is important for clinicians to adopt adequate sampling protocols and 
interpret the data correctly. 

Introduction
Ultrasound Elastography (USE) is a non-invasive imaging 
technique that uses the physical properties of ultrasound to 
evaluate the elasticity (or, conversely, the stiffness) of different 
biological tissues in order to obtain diagnostic information [1]. 
In fact, not only the elasticity of the adipose tissue is differ-
ent from that of the glandular tissue, but the normal glandular 
tissue has different mechanical properties from the neoplastic 
glandular tissue. Intuitively, this is also why clinical palpation 
is such an essential tool for detecting and locating large tumor 
masses during physical examination.
In the first paragraph we explain the physical principles under-
lying the USE and its various sub-techniques. In the second 
part of the article some examples of clinical applications such 
as liver, breast, thyroid and lymph nodes are briefly presented. 
For each application, some studies are reported that illustrate 
how the USE could usefully integrate B-mode ultrasound 
into clinical routine, contributing to the paradigm shift from a 
qualitative ultrasound approach to quantitative multiparamet-
ric ultrasound. Although the USE has gained a lot of popular-
ity in recent decades, low specificity and operator dependency 
are the main problems preventing large scale application [2].  
Therefore, in the last paragraph, we present some recent find-
ings of how the application of artificial intelligence to the USE 
could partially overcome these limitations, improving the diag-
nostic performance of this imaging technique and its integra-
tion into the clinical workflow.

Basic Physics of Ultrasound Elastography
The physical principles of the USE techniques are complex; 
in-depth reviews are available here [3-5]. In this article, we 

propose a description for clinicians using simplified models 
and avoiding as much as possible the differential notation in 
the equations. We are aware of the several limitations of our 
description of physical principles from a formal standpoint, but 
we tried to achieve a good balance between correctness and 
accessibility of contents, especially for those without advanced 
mathematics knowledge. Similar accounts may be found in 
other reviews [1,2,6]. 

Longitudinal elasticity and young’s modulus (E)
To introduce the physical principles underlying USE tech-
niques it is useful to start considering the first developed tech-
nique, which is classified as strain elastography (SE) [1,7-10]. 
SE measures the stiffness as a function of tissue deformation 
generated by applying pressure with a probe on the body sur-
face [1,2,10]. In the studies adopting this technique, research-
ers are interested in knowing a quantity defined as Young's 
modulus (E), which expresses the tissue property of our inter-
est, namely its elasticity.
In material mechanics, the elasticity of a material describes its 
tendency to resume its original size and shape after being sub-
jected to a deforming force or stress [11].  
The stiffness is the opposite of elasticity and is the ability of a 
body to oppose the elastic deformation caused by an applied 
force [12]. A more detailed account of the elastic properties of 
tissues may be found here [13].
Since stiffness is the resistance to deformation, an application 
of external force is required to measure it: this is, in very sim-
ple terms, the underlying principle of SE. 
If an elastic body is not free to move when it is subjected to an 
external force, it deforms and develops a force that opposes the 
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deformation. Hooke's law is the simplest law describing the be-
havior of an elastic spring subjected to a force F longitudinally, 
either in traction or compression (Figure 1). Hooke's law states 
that an elastic body undergoes a deformation directly propor-
tional to the force applied to it:
F= -kE . Δlx               (Equation 1),
where F is the force of retraction of the spring that is equal 
and opposite to the applied force, Δlx represents the elongation 
undergone by the spring along the x-axis (we suppose that the 
deformation occurs only in 1-D), and kE represents the longitu-
dinal elasticity coefficient, which depends on the nature of the 
material itself and is dimensionally expressed as [N.m-1]_. This 
law is valid, of course, within certain limits, beyond which the 
body loses the capacity to return to its original shape (elastic 
behavior) and becomes permanently deformed (plastic behav-
ior). 
The formulation of Hooke's law in Equation 1 is useful for 
describing the deformation of a spring stressed longitudinally, 
in traction or compression, along the x-axis. Here we present 
a more general formulation of Hooke's law using a tensorial 
notation that uses two vector quantities: the tension (equal to 
external force per unit area) and the strain (equal to deforma-
tion per unit length):
  σ=E.εl                 (Equation 2),
where σ represents the tension applied, εl represents the strain 
and E represents a constant known as Young's modulus, which, 
similarly to the kE  in Equation 1, depends on the intrinsic char-
acteristics of the body. 
Although Equations 1 and 2 look similar, they are not equiva-
lent. The demonstration of Equation 5 is beyond the scope of 
this text, however, in simplistic terms, we can define the ten-
sion σ as the ratio between the applied force F and the surface 
A on which the force is applied:
σ=  F/A                 (Equation 3).
Its unit of measure is the Pascal, dimensionally defined as [N/
m2].

In turn, the longitudinal strain ε_lis defined as the ratio be-
tween the change in length and the initial length:
εl=  (lf-li)/li  = Δl/L               (Equation 4),
where l_f is the final length and li is the initial length (or L).  εl 
is also called the longitudinal deformation coefficient and, un-
like the displacement Δlx in the simplified Hooke's law (Equa-
tion 1), it is a dimensionless quantity.
In this second formulation (Equation 2), Young's modulus (E) 
appears in the place of the longitudinal coefficient of elasticity 
(kE) in Equation 1. Young's modulus of elasticity expresses the 
relationship between the stress and the deformation (strain) in 
the case of uniaxial load conditions and in the case of fully 
elastic behavior of the material:
E=  σ/ε                 (Equatiopoint 5).
It expresses the property of the tissue that is of most interest 
to us, that is, the way it reacts to external mechanical stress. 
Although they express similar concepts, note that unlike the 
longitudinal elasticity coefficient, the measurement unit of the 
Young Modulus in the International System is the Pascal [N/
m2]. For a homogeneous isotropic solid, the ratio of the stress 
and the strain is a constant, called the modulus of elasticity.

Shear waves and shear modulus (G)
Ultrasound propagate through compression waves longitudi-
nally, in the same direction of the tissue displacement induced 
by an external force applied perpendicular to the surface. In 
shear waves, the particles propagate orthogonally to the di-
rection of the ultrasound beam [7-9] (Figure 2). Unlike strain 
elastography, in which Young's modulus is derived from the 
displacement, in shear waves methods, the physical quantity of 
interest is the shear waves speed. Young's modulus may then 
be converted from the shear wave velocity using Equation 2, 
on the assumptions of constant density, homogeneity, isotropy, 
and incompressibility of the material  [7-9].
To understand the mechanisms underlying shear waves elas-
tography, consider a cylindrical model, such as the one shown 

Figure 1. Spring model of Hooke’s law and longitudinal strain.  
A simple helical spring model can be used to represent Hooke’s law. Hooke's law states that the force (F) required to 

extend or compress a spring for a certain distance (Δlx) scales linearly to that distance. On the left, the upper image (a) 
represents the spring in rest conditions, characterized by a longitudinal elasticity constant kE that is typical of the spring. 

The lower spring (b) represents the spring stressed in traction by a force F parallel to the x-axis.  Δlx represents the 
longitudinal displacement of the free hand of the spring. In this notation, note the "-" sign in front of the second member: 
that means that F is the restoring force exerted by the spring on whatever is pulling its free end, since the direction of the 
restoring force is opposite to that of the displacement. Under Hooke's law there is also the tensor notation with the stress 

(σ) in the place of the force (F), and the longitudinal deformation (εl) in the place of the displacement (Δlx).
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in Figure 2, which represents a portion of tissue. Up to now 
we only have considered the deformation that occurs along the 
force axis (longitudinal strain); however, in the absence of vol-
ume variations, a cylindrical object becomes thinner and wider 
when compressed. Consequently, it is possible to calculate not 
only the longitudinal strain εl but also the transverse strain εs. 
The percent change in the radial direction εt is called transverse 
strain and, analogously to the longitudinal strain in Equation 2 
is defined as:
εt=  Δr/R               (Equation 6),
where Δr represents the change in width and R represents the 
initial radius. Since the two components coexist, it is possible 
to calculate the ratio between the longitudinal and transverse 
deformation. This ratio is named Poisson’s ratio and is indi-
cated with the Greek letter ν ("ni"):
ν=εl/εt                  (Equation 7). 
Poisson ratio is important as it represents the degree to which 
the material shrinks or expands transversely in the presence of 
longitudinal stress. In addition, Poisson's ratio indicates the ex-
tent of volume change caused by deformation that, in the case 
of a virtually incompressible material, has a value equal to 0.5. 
This is important because biological tissues react to compres-
sion more similarly to our cylinder than to the spring in Figure 
1.
In the cylinder example, we considered transverse deforma-
tion as a result of longitudinal compression, and that model is 
important to understand how the two types of deformations are 
related. However, it is possible to consider a simplified model 
in which only shear forces act, such as the one in Figure 3. 
Similar to what has been done for Young’s Modulus, it is pos-
sible to describe a quantity, which we define G, to indicate the 
shear modulus. The equation becomes: 
σ_ = G  εt               (Equation 8),
where  σ_ is the tangential (or shear) stress, G is the shear mod-
ulus and εt represents the shear strain (i.e. the percentage of 
transverse displacement).
The two types of elastic moduli are not independent, but are in-
terrelated, as seen from the Poisson ratio concept. Concerning 
the shear modulus, it is usually considered a derived param-
eter, which can be expressed through the elastic modulus (the 

"Young's modulus") and the Poisson's ratio. Thus, the trans-
verse modulus of elasticity or shear modulus G can normally 
be calculated from the other two parameters through:
G=  E/(2(1+ν))              (Equation 9),
which, by making E explicit becomes:
E=2(ν+1)G               (Equation 10).
Due to the high-water content of biological tissues, the Pois-
son's ratio can be approximated to 0.5 compared to an incom-
pressible medium, from which:
E   3G               (Equation 11). 
These elastic modules are important not only because they de-
fine the deformations of bodies subjected to a force, but also 
because they influence the speed of propagation of mechanical 
waves in the medium. 
For a sound wave, the longitudinal propagation speed cl is 
given by:
cl= √(E/ρ)                (Equation 12)       
which E represents Young's modulus and ρ represents the den-
sity of the medium. In soft tissues, the speed of sound is about 
1540 m/s and is comparable to that in water (1500 m/s).
If we consider the speed of the waves propagating in the trans-
verse direction (shear waves), the notation becomes:
cs= √(G/ρ)              (Equation 13)
where G represents the shear modulus and ρ represents the 
density of the medium. 
Equations 12 and 13 indicate that the velocity of propagation 
of longitudinal and transverse waves increases with the in-
creasing of E and G, respectively. Because Young's modulus 
is always higher than the shear modulus (approximately three 
times the shear modulus, Equation 11), the longitudinal waves 
are always faster. The speed of the shear waves in the soft tis-
sues (1-10 m / s) is significantly lower than the longitudinal 
waves and covers a wider range of values. This fact has impor-
tant implications in USE because the differences in the speed 
of the shear waves can be used to obtain information on the 
elasticity of the tissues (see further).
In conclusion, the greater the value of E or G (that is to say, 
the greater the stiffness of the tissue), the greater the velocity 
of sound waves.

Figure 2. Relationship between the longitudinal and the transverse strain in solids: a cylindrical model. 
The figure presents a cylindrical model representing a portion of biological tissue. Before compression, the cylinder has 

height (L) and radius (R). After the application of an orthogonal force (red arrow), the cylinder becomes thinner and wider. 
The longitudinal strain (εl) is defined as the ratio between the change in length (ΔL) and the initial length (L). The trans-

verse strain (εs) is defined as the ratio between the variation of the radius (Δr) and the initial radius (R). The ratio between 
the longitudinal and transverse deformation is called Poisson's ratio and depends on the characteristics of the medium.
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Viscoelastic models
Up to now, we have considered biological tissues as solids 
characterized by a perfectly elastic behavior, without consid-
ering the viscous components. In reality, biological tissues 
are highly hydrated media and internal friction forces cannot 
be neglected. Because biological tissues contain both elastic 
and viscous components, they are called viscoelastic media. 
Similarly, to elasticity, the viscosity of a viscoelastic material 
consists of two contributions: the shear viscosity, which is the 
ratio between the shear stresses and the deformation rate, and 
the elongational viscosity (or extensional viscosity), which is 
the ratio between the normal stresses and the strain rate. 
When shear stress is applied to a fluid, instead of the deforma-

tion (as for the solid in Figure 3), it produces a sliding of the 
various layers of fluid (Figure 4). This sliding is hindered by 
internal frictional forces, a characteristic called viscosity. The 
dynamic viscosity of a fluid is a measure of its resistance to 
flow when tangential stress is applied and it is due to adjacent 
layers of fluid moving at different speeds. Shear elasticity in 
solids and viscosity in fluids are somehow interconnected, but 
with differences. In fact, viscosity is a property that manifests 
itself in a liquid in relation to the speed with which stress is 
exerted. 
The model presented in Figure 5 (Kelvin-Voigt model) is used 
to predict the behavior of solid viscoelastic materials when vis-
cosity is taken into account. Where the speed of the applied 

Figure 3. Shear strain in a solid.
Unlike the cylindrical model, the model in the figure allows us to consider the case in which only shear forces are acting. 

We consider a prism of elastic material and a shear force F (red arrow) applied parallel to the x-axis. Similarly to what was 
done for Young's modulus, it is possible to describe a quantity, which we define G, to indicate the shear modulus, that is the 
constant of proportionality between the shear stress and shear strain. The transverse deformation can also be expressed as 

a function of the angle θ.

Figure 4. Viscosity. 
The figure illustrates the concept of viscosity and highlights the similarities with the shear stress in a solid. In the image, 

a plate flows on the surface of a fluid. The plate is pulled with a force of intensity F (red arrow). If there were no fric-
tion, the plate would move with a uniformly accelerated motion, however in reality its speed tends to be constant over 
time since the force F is balanced by a friction force due to the sliding of the various layers of liquid (in conditions of 
laminar motion). The viscous friction force acting on the plate has an intensity given by the relation 1 and it is directly 
proportional to the sliding speed. According to relation 2, it’s worth noting that unlike the shear stress in solids (3), the 
shear deformation is not expressed as a length, but as a gradient of velocity, that is the change in velocity with respect 

to the depth of the liquid.
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external force is slow (such as manual compression), the effect 
of viscosity can be ignored. Conversely, if a high-frequency 
vibration is applied, the viscous component will have a greater 
effect, the magnitude of which will depend on the frequency. 
Velocity dispersion caused by the viscosity occurs during wave 
propagation when the frequency is high in soft tissues, and vis-
cosity must be considered [9].
When the Kelvin-Voigt model is used, the following equation 
is derived for the speed of a transverse wave instead of Equa-
tion 13 [9,16]:

where G is the shear modulus, μ is the dynamic viscosity coef-
ficient and f is the frequency. Despite the complexity of this 
equation, it is worth noting that shear waves velocity becomes 
a function of frequency f, and the higher the frequency, the 
faster the speed [8]. This could lead to differences in shear 
wave speeds measured within different imaging devices.

From Basic Physics to Imaging
From Young’s modulus to strain imaging 
Strain imaging was the first type of USE developed in the 
1970s by Dr. Jonathan Ophir [1,7].  In this technique, stress 
is applied perpendicularly through different modalities and the 
normal strain is measured to infer tissue elasticity [1,2]. 
Strain imaging is divided into two different techniques based 
on the modality of the compression: Strain Elastography (SE) 
and Acoustic Radiation Force Impulse (ARFI) strain imaging. 
In SE, compression is achieved directly, through manual com-
pression or, indirectly, through heart pulse or respiratory move-
ments [2]. In freehand compression, the ultrasound probe has 
the dual function of the ultrasound transducer and mechanical 
actuator [7]. The operator manages the transducer to produce a 
quasi-static load with a compressive stress of up to 3%-5% [2].
In ARFI strain imaging, the tissue deformation is produced 
through a short-duration (0.1-0.5 ms) high-intensity (spatial 
peak pulse average = 1400 W/cm2, spatial peak temporal aver-
age = 0.7 W/cm2) acoustic “pushing pulse” to produce a small 
displacement of ~ 10-20 μm in the normal direction (i.e. per-
pendicular to the surface) [2,14-17]. In this technique, the same 
transducer is used to generate and monitor tissue displacement. 
Intuitively, the displacement response is directly related to the 

magnitude of the applied force and inversely related to the tis-
sue stiffness.
In both techniques, only the displacement in the direction of 
the impulse propagation is measured to calculate the strain, 
without taking into account transverse strain. In SE, the stress 
applied manually or physiologically is not quantifiable, but, as-
suming that the normal solicitation σ is uniform, Equation 2 is 
used to provide a quantitative assessment of Young's modulus 
E and thus the elasticity of the tissues [1,2].
The induced tissue displacement is measured through different 
techniques depending on the manufacturer, including spatial-
correlation methods, Doppler processing, or a combination of 
the two methods [1,2]. As known, the ultrasound image in B-
mode consists of a 2-D map of signs representing the echos 
pattern or speckles pattern. In the first method, the elasticity is 
measured starting from the analysis of the images before and 
after the compression and by mapping the differences in the 
echo pattern within a region of interest (ROI). This method 
is called the spatial correlation method and measures 1D-dis-
placement along the beam axis [1,2].  The cross-correlation co-
efficient is the mathematical tool used to evaluate the degree of 
similarity before and after the compression, but its analysis is 
beyond the scope of this text [1,2]. Here, we offer a simplified 
model of the functioning of SE using spring models to repre-
sent biological tissues (Figures 6a-c).
The autocorrelation-based method is the preferred estimator 
without considering the lateral displacement [18]. In reality, 
each ROI also moves in the transverse direction due to the 
lateral deformation of the tissues, therefore an adjustment is 
needed to estimate the displacement more accurately in both 
longitudinal and transverse directions. The second technique is 
essentially based on the same principle used in color-Doppler 
imaging [1,2,6]. In this case, the phase difference between the 
echo signals obtained by transmitting repeated pulses before 
and after compression is detected, and an autocorrelation meth-
od is used to calculate the displacement [1].  
The methods described so far are not suitable for real-time pro-
cessing because of the amount of computation time required. 
Concerning the practical application in the clinical setting, as 
the fluctuations in compression speed are large when manual 
compression is used, a high degree of accuracy to accommo-
date small displacements is required. More recently, some au-

Figure 5. Kelvin-Voigt model for viscoelastic materials. 
Typically the Kelvin-Voigt model is used to predict the behavior of solid viscoelastic materials. This model is represented 
by a purely viscous damper (bottom) connected in parallel to a purely elastic spring (top). The constitutive equation as-

sociated is represented on the right. For more explanation, see text.
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Figure 6a. Principles of strain elastography. 
Assuming that the tissue behave as a purely elastic material and that the displacement occurs only in the longitudinal direction, 

the deformation can be approximated with a 1D spring model. 
Before the compression (a), 4 different points (named P1-P4) located at different depths (z) are identified on the spring. 

After the compression (b), each point displaced downwards (δ), but the more superficial show a greater displacement than the 
deeper ones (δ1> δ2 , δ2 > δ3 and so on). 

Intuitively, the displacement is maximum for a point located at the free end of the spring (on the surface of the tissue) and virtu-
ally zero for a point located at the anchor end. 

The graph in (c) represents the relationship between the depth (z) and the displacement. The relationship is linear and the dis-
placement reaches the maximum for the more superficial points and tends to zero for the deeper ones. The slope of the line is an 

expression of the coefficient of elasticity, an intrinsic characteristic of the medium (see also Figure 10b). 
Because two distinct points can hypothetically belong to areas with different elasticity coefficient, to assess the whole elasticity 

profile of the tissue it is necessary to correlate the displacement of different samples of neighboring points (see also Figure 10c).

Figure 6b. Principles of strain elastography. 
The first row shows three spring models, representing different samples of biological tissues. Before the compression, they 

have the same initial length (Z), represented with the dotted gray silhouette superimposed. Assuming that the stress (σ=F/S) 
exerted on them (red arrows) is identical in all three cases, the tissue on the left demonstrates the greatest stiffness (blue 
spring), the middle one has intermediate stiffness (blue spring) and the one on the right is the most elastic (green spring). 

In each spring we depicted four representative points (yellow dots) and before the stress those points are supposed to be virtu-
ally aligned.

The three graphs below represent the relationship between the depth of the points (with respect to the free end of the spring) 
and the displacement obtained. If we consider three points located at the same depth, for example the most superficial ones, 

the higher the stiffness of the spring, the less the displacement.  
It is evident that the slope of the line is an expression of the coefficient of elasticity and it is an intrinsic characteristic of the 

medium.
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Figure 6c. Principles of strain elastography. 
The spatial correlation method measures 1D-displacement along the beam axis. Because the window moves while maintain-
ing its speckle pattern as long as the strain is extremely slight, the displacement is calculated by setting a region of interest 
(dotted line), and calculating the spatial correlation of the speckles before (t’) and after (t’’) the compression. Displacement 
δ(z) in each site z in the beam direction of the tissue is then obtained through the correlation between the echo signal before 
and after the compression (the equation is not provided here, see [1,2]). In In the next step, the strain ε is obtained by con-
sidering the ratio of the difference in displacement between two points and their distance pre-compression. Young modulus 

is finally provided through Eq.  2 assuming the stress to be uniform.   
The model in figure helps to visually understand the mechanism. We only consider the displacement in the direction of the 
propagation of the ultrasound beam. The tissue deformation is approximated using a 1D spring model as in Figure 10-11, 
but instead of the spring is represented an echo pattern similar to A-mode ultrasound. We consider four P-points located 
at different depth (z), named from 1 to 4. Point 1 and 2 are both located in a very elastic part of the tissue (in red). Taking 
into account their differential displacement (displacement in relation to the depth), the interpolating line in the upper right 
graph represent the elastic behaviour of that part of the tissue. Points 3 and 4 are both located in a rigid zone and therefore 
the differential displacement between the two points is different (note the different slope in the graph). In other words, even 

after correcting for depth, points P3-4 moves proportionally less than P1-2. In the graph in bottom right is depicted the 
displacement and longitudinal strain.

Figure 7. Point Shear Wave Elastography.
Image is obtained with Point Shear-Wave Elastography (ElastQ, Philips), using a convex probe in a 
healthy volunteer. A small ROI is placed in the middle third of the renal parenchyma. The mean stiff-

ness value was 9.95 kPa.
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thors developed a new tool called the combined autocorrela-
tion method (CAM), which combines the merits of the spatial 
correlation method and the phase differences detection  [1, 19]. 
In SE, the numerical values that express the deformation and 
therefore the stiffness, are displayed as a semi-transparent col-
or map called the elastogram, which is usually displayed on a 
superimposed B-mode image. Typically, low tension (hard tis-
sue) is displayed in blue, and high (soft tissue) is displayed in 
red, although the color scale may vary depending on the manu-
facturer, clinical setting, or personal preferences [1,2,20,21].
In Strain Imaging, results are generally expressed as a Strain 
Ratio, a parameter normally used to measure the stiffness of 
a discrete mass lesion. In Strain Ratio, two regions of interest 
(ROI) are drawn on the target region and an adjacent reference 
region that is experiencing a similar stress. Then, a strain ratio 
is automatically calculated by the machine as the mean strain 
in the reference (B) divided by the mean strain in the “lesion” 
(A) [22]. Both ROI should be placed at the same depth. 
Strain Ration (B/A) =   (Mean strain of fat area (B))/(Mean 
strain in lesion of interest (A))
The usefulness of this index emerges, for example, in the eval-
uation of nodular lesions in which the probability of malig-
nancy increases as the deformation ratio increases [23].
In strain imaging, the elastic modulus E is derived directly 
from the strain (Equation 2) and not from the differences in 
longitudinal waves speed (Equation 13). The reason is that the 
longitudinal waves propagate at a very high speed in biologi-
cal tissues, with little variation between different types of tis-
sues, and the relatively small differences do not allow adequate 
tissue contrast resolution for elastography measurements [1]. 
This does not apply to the speed of the shear waves, which is 
the basis of shear wave imaging [1]. 
A a good practical guide written by industry experts on how to 
perform deformation elastography is available here [22]. 

From shear waves to shear wave imaging
Shear wave imaging focuses on the shear waves created by the 
mechanical excitations in solids, in which the particles move 
perpendicularly to the direction of propagation [8,9]. As previ-
ously mentioned, the propagation speed of the shear waves in 
soft tissue is several orders of magnitude slower than the speed 
of sound waves in soft tissue and ranges from 1-10 m/s com-
pared to 1540 m/s. For this reason, measurement of the shear 
wave speed is suitable for producing a good contrast resolution 
for soft tissues.  In shear wave imaging Young's modulus E is 
calculated from shear wave speed. In fact, starting from Equa-
tion 9 and by making G explicit, we obtain
G =ρcs

2                 (Equation 15)
but E   3G  (Equation 11) from which it derives:
E =3ρcs

2             (Equation 16)
where measurement of cs^  allows estimation of E and G. Den-
sity ρ has units kg/m3 and cs^  has units m/s so ρcs

2 is dimen-
sionally defined as kg/(m*s2) which is equivalent to N/m2 or 
kilopascals, that is the unit of measurement of E and G. A re-
cent consensus advocates reporting results as shear wave speed 
in m/s as part of a standardized approach [1,24].
From a technical point of view, the calculation of the shear 
wave speed makes use of so-called time-of-flight (TOF) meth-
ods that perform a linear regression of the wave time arrival 
with respect to different positions [1].  The TOF indicates the 
measurement of the time taken by an object, a particle or a 
wave to travel a certain distance in a given medium: knowing 
the distance between the two points and the time taken to travel 
it, it is possible to derive the speed. 

In shear wave elastography (SWE), the shear wave speed with-
in a location of interest is derived by cross-correlating the time 
profiles of the shear wave-induced displacement at two neigh-
boring points. Starting from the comparison of these profiles, a 
mathematical function gives the time taken for the shear wave 
to travel between the two points and then the shear wave speed 
is obtained by dividing the distance between the two points by 
the transit time [25]. TOF-based methods employ assumptions 
about tissue behavior to generate an estimate of the shear wave 
velocity, including local homogeneity, and a known direction 
of propagation [1].
As with strain imaging, shear waves can be generated by dif-
ferent sources, including external vibration and acoustic radia-
tion force [1]. There are currently three technical approaches 
for SWE: 1) 1-dimensional transient elastography (1D-TE), 2) 
point SWE (pSWE)), and 3) 2-dimensional SWE (2D-SWE). 
The first commercially available ultrasonic shear wave mea-
surement system was the FibroScanTM (Echosens, Paris, 
France), which uses the probe as a mechanical actuator [26]. 
The probe produces a controlled mechanical excitation through 
a piston that punches the surface of the body at a high frequen-
cy and is integrated with an ultrasonic transducer to monitor 
the impulse of the shear waves generated by the piston. This 
method was designed specifically to measure liver stiffness and 
does not provide a 2D-guide for the operator, similarly to A-
mode imaging. Therefore, the sampling relies on the operator's 
knowledge of the gross anatomy of the liver. 
The analysis of the echo pattern along the A-line allows ad-
justment of the acoustic window avoiding the suboptimal ones 
due to the interference of vascular structures or other causes. 
In transient elastography (TE) the ultrasound transducer has a 
fixed focal configuration and uses the same probe to create the 
dynamic stress and to measure the shear wave speed along the 
A-line that is investigated by the transducer. The FibroScanTM 
displays the corresponding Young's modulus.  However, the 
lack of grayscale images makes it difficult to understand where 
the measurement is being made, the need to recalibrate the 
spring in the device at intervals of 6 to 12 months (depending 
on the type of probe), reduced applicability in cases of obesity 
and impossible to employ in patients with ascites [27]. 
The second method is the pSWE. In this technique, an acous-
tic radiation force is used to induce tissue displacement in the 
normal direction in a single focal location (therefore named 
“point” SWE) [1,28]. However, unlike ARFI strain imaging, 
the tissue displacement itself is not measured. Similar to other 
SWE methods, the speed of the shear waves, which propagate 
perpendicularly to the direction of propagation of the ultra-
sound beam, is measured. Velocity may be either reported or 
converted in young’s modulus E to provide a quantitative es-
timation of tissue elasticity. Unlike TE, p-SWE may be per-
formed on a conventional ultrasound device and B-mode im-
age guidance is possible during the measurement because the 
same probe is used to generate the shear waves and to detect 
their propagation (Figure 7) [29]. 
In pSWE the tissue region interrogated by a single, highly-
focused ultrasound beam is narrow because the shear waves 
rapidly attenuated by the internal frictional forces as they prop-
agate from the excitation region. To derive tissue stiffness over 
a larger ROI, data from multiple pushes must be combined and 
this is the basis of 2-dimensional shear wave elastography (2D-
SWE) [1,2]. 
2D-SWE is the latest technical innovation that uses acoustic ra-
diation force to assess tissue elasticity (Figure 8). 2D-SWE al-
ternates multiple perturbations and reading phases, enabling an 
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Figure 8. 2-D shear wave elastography. 
In 2D-SWE, instead of a single focal location as in ARFI strain imaging and pSWE, acoustic radiation force is used 

to interrogate multiple focal zones in rapid succession, faster than the shear wave speed. In step 1 (on the left), shear 
waves are generated using acoustic radiation force impulses; they propagate perpendicularly to the primary US wave 
at a lower velocity. In step 2 (on the right), fast longitudinal wave excitation (blue and red arrows) is used to track dis-

placement (orange small arrows) as shear waves propagate through a speckle tracking algorithm. In step 3 (not shown), 
tissue displacements are used to calculate shear-wave velocity (cs) with a time of flight algorithm and then shear modu-

lus (G) is derived.

Figure 9.  Confidence map and elastogram in 2D-SWE.
The image is obtained with two-dimensional shear-wave elastography (2D-SWE) (ElastQ, Philips), using a convex probe 
in a healthy volunteer. The confidence map is displayed on the left, setting a threshold of 60%. A standard deviation 60% 
or less of the mean value is indicative of a good quality acquisition. The areas of low quality (red) are filtered out by the 

system and displayed transparent (note that the area in red correspond to a vascular structure on the B-mode); the yellow 
color is a warning indicating that the area is not of good quality; the green indicates a good quality of the measurement. 
On the right, the elastogram depicts a colorimetric map of the stiffness in which blue color corresponds to greater elas-

ticity while red represents greater stiffness. In the elastogram on the right a circle sampling area was inserted to obtain a 
quantitative measure of the stiffness value in the selected location (mean kPa 4.83). The presence of the confidence map 

helps the operator to check the quality of the sampling in real-time.
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