Abstract
Aims & Objectives: Acute Diarrhea (AD) is a highly prevalent condition that causes significant morbidity and mortality worldwide. Conventional therapies include Oral Rehydration Solutions (ORS), Antibiotics and Zinc Products. Emerging data suggest that Probiotics use in the treatment & control of AD cases in children may help supplement current therapies for further control.

Methods: Herein, we review the evidence of several Probiotics modalities for AD treatment. We describe the Clinical Impact & prevalence of Acute Diarrhea in children and its complications, provide an overview of current treatments, and finally, discuss recent emergent Gut approaches to AD management. Specifically, we will describe - in a Comparative study - on the utility of different kinds of Probiotics known & used and common natural products in the treatment of Acute cases of AD and focus on recent, high-quality studies. Adverse effects and potential interactions of each therapy will be highlighted where applicable.

Keywords: Probiotic strains; Diarrhea; Intestinal colonization; GUT Microbiome; Dehydration; LrGG

Introduction
Acute Diarrheal Diseases considered as the most common leading causes of children mortality all over the globe. Today, only 39 per cent of children with Diarrhea in developing countries receive the recommended treatment, and limited trend data suggest that there has been little progress since 2000, more than 386000 children dies in India only due to A. Diarrhea every year. An international commitment to tackle childhood Diarrhea in the 1970s and 1980s resulted in a major reduction in child deaths. This came about largely through the scaling up of oral rehydration therapy, coupled with programs to educate caregivers on its appropriate use. But these efforts lost momentum as the world turned its attention to other global emergencies. Our review aims to search & updates the Evidence-Based Review Articles that study the use of specific probiotic strains, namely Lactobacillus Rhamnosus GG (LGG) and Saccharomyces boulardii, for the management of children with Acute Gastroenteritis (AGE) as an adjunct to rehydration therapy. This Literature Review also aim to show us the role of different probiotics in the treatment of acute diarrhea in children.

“Probiotics May be an Effective adjunct to the Management of Diarrhea”.
Rhamnosus GG (LGG) significantly reduced duration of diarrhea, daily stool outputs, improved stool consistency and reduced no. of hospitalization and fever in children compared to other probiotics (B. clausii and S. boulardii) & ORS group as we will discuss now. The guidelines recommend the use of the specific probiotic strains, namely Lactobacillus rhamnosus GG (LGG) and Saccharomyces boulardii, for the management of children with acute gastroenteritis (AGE) as an adjunct to rehydration therapy.

Discussion
The Efficacy of any probiotic is strain-dependent. Lactobacillus acidophilus strain is effective in IBS but not in AAD. Bifidobacterium bifidum reported that one strain (CIDCA5310) inhibited enterocyte invasion by Salmonella arizonae, whereas the other (CIDCA 537) had no effect. Lactobacillus rhamnosus GG (ATCC) help in treatment of Acute diarrhea, Persistent diarrhea, Rotavirus diarrhea, Gastroenteritis, AAD (Antibiotic Associated Diarrhea) Prevention & Treatment, Traveller’s diarrhea, Nosocomial diarrhea, Irritable Bowel Syndrome (IBS), Abdominal pain, Crying etc. , Ulcerative colitis, Necrotizing Enterocolitis (NEC) in pre-term infants, As an adjuvant to vaccines to stimulate immunity, Gastrointestinal infections & Respiratory Infections. L. Rhamnosus GG-Age group help in treatment of Acute infectious diarrhea, Antibiotic-Associated Diarrhea (AAD), Nosocomial diarrhea, Acute Gastroenteritis
(AGE), Irritable Bowel Syndrome (IBS), Preventing infections, Allergic diseases, C. difficile diarrhea Pouchitis, Adjuvant therapy for H. pylori Eradication.

Proved Advantages & Clinical Benefits Of LGG Probiotic Strains Use
Lactobacillus rhamnosus GG (ATCC 53103) has a safe history of use in since1990 Can even be given to a 24 hrs old neonate Clinically studied in various age group population starting from new born preterm infants to elderly population Clinically studied at various dosage range starting (120mn CFU to 2000bn CFU/d)

Do probiotics work in Acute Infectious Diarrhea 63 trial, 8014 subjects
That Study Concluded That Its use reduced the duration of diarrhea by around 25 hours Risk of diarrhea be > 4 days by 59%
& One fewer diarrheal stool on day 2 after the intervention That study concluded that: The use of LrGG P. Strains; LrGG group has shown highest & significant efficacy in terms of reducing duration of diarrhea compared to other probiotics & ORS group.
Reduce In Daily Stool Outputs: LrGG group has shown significant reduction in terms of no. of stools per day on Day-2 compared to other probiotics & ORS group.
Improve In Stool Consistency: LrGG group has shown significant improvement in terms of stool consistency on Day-2 compared to other probiotics & ORS group.
Recent Content Analysis Report Of Various Probiotic Brands(Indian Pediatrics, April 2018 Issue …)
Comparative Study of 3 Brands. Enterogermina vs. Tufpro vs. Darolac Aqua ; That comparative review stated only product 1 was found to contain a homogenous population of bacillus clausii where as product 2 and product 3 showed growth of bacillus subtilis species in the samples.

Recent Content Analysis Report Of Various Probiotic Brands(Indian Pediatrics, April 2018 Issue …)
Comparative Study of 3 Brands. Enterogermina vs. Tufpro vs. Darolac Aqua ; That comparative review stated only product 1 was found to contain a homogenous population of bacillus clausii where as product 2 and product 3 showed growth of bacillus subtilis species in the samples.

Table 1: Probiotics for treatment of acute diarrhoea in children: Randomised clinical trial of five different Preparations

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Dosage (twice daily)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control: Oral rehydration solution (ORS) (N=92)</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Saccharomyces boulardii (N=91)</td>
<td>5 billion CFU/dose</td>
</tr>
<tr>
<td>3</td>
<td>Bacillus clausii (N=100)</td>
<td>1 billion CFU/dose</td>
</tr>
<tr>
<td>4</td>
<td>Enterococcus faecium (N=91)</td>
<td>0.075 CFU/dose</td>
</tr>
<tr>
<td>5</td>
<td>Lactobacillus rhamnosus GG (ATCC53103) (N=100) (uncoated)</td>
<td>6 billion CFU/dose</td>
</tr>
</tbody>
</table>

Comparative clinical study: L. rhamnosus GG vs. B. clausii vs. S. boulardii

Study design
This Study designed to compare the efficacy of 5 different preparations recommended to parents in the treatment of acute diarrhea in children.
Design: Prospective randomized controlled clinical trial.
Study Arm: N=571 children (age 3-36 months).
Duration: 5 days.

Conclusions
Our mini review aims to use of the specific probiotic strains, namely Lactobacillus Rhamnosus GG (LGG) and Saccharomyces boulardii, for the management of children with Acute Gastroenteritis (AGE) as an adjunct to rehydration therapy.2 The aim of this Mini Review also is to show us the role of probiotic in the treatment of acute diarrhea in children. we review the evidence of several Probiotics modalities for AD treatment. We describe the Clinical Impact & prevalence of Acute Diarrhea in children and its complications, provide an overview of current treatments, and finally, discuss recent emergent Gut approaches to AD management. Specifically, we will describe - in a Comparative study - on the utility of different kinds of Probiotics known & used and common natural products in the

<p>| TABLE 1: CONTENT ANALYSIS OF THREE COMMERCIALLY AVAILABLE PROBIOTIC PREPARATIONS CONTAINING BACILLUS CLAUSII |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Product 1: Bacillus clausii</th>
<th>Product 2: Bacillus clausii</th>
<th>Product 3: Bacillus subtilis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species on label</td>
<td>Bacillus clausii</td>
<td>Bacillus clausii</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>Isolated species</td>
<td>Bacillus clausii</td>
<td>Bacillus subtilis</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>Label count</td>
<td>2 x 10^8</td>
<td>2 x 10^9</td>
<td>2 x 10^8</td>
</tr>
<tr>
<td>Isolated species count</td>
<td>1 x 10^8</td>
<td>2 x 10^8</td>
<td>2 x 10^8</td>
</tr>
<tr>
<td>Batch 1</td>
<td>1 x 10^8</td>
<td>2 x 10^8</td>
<td>3 x 10^8</td>
</tr>
<tr>
<td>Batch 2</td>
<td>2 x 10^8</td>
<td>3 x 10^8</td>
<td>4 x 10^8</td>
</tr>
<tr>
<td>Batch 3</td>
<td>3 x 10^8</td>
<td>4 x 10^8</td>
<td>5 x 10^8</td>
</tr>
</tbody>
</table>
treatment of Acute cases of AD and focus on recent, high-quality studies. Adverse effects and potential interactions of each therapy will be highlighted where applicable. Some probiotics agents have a Beneficiary effects on the onset, course of acute Diarrheal illnesses but still in need for further reviews on the side effects & safety of such agents.

References