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Supervised Learning in Tumor Cell Quantification

Abstract

Tumor grading  is an important aspect of diagnosis, prognosis, and treatment of cancer. Conventional grading systems, includ-
ing the mitotic index for breast cancer and the Gleason score  for prostate cancer, are typically based on manual evaluations 
susceptible to inter- and intra-observer variability. These limitations highlight the importance of standardised, objective, and 
automated methods to  enhance the accuracy of cancer grading.

Supervised learning systems have shown great promise in tumor quantification and grading, with consistent and reproducible 
results across a wide  range of cases. Various algorithms, including Support Vector Machines, Random Forests, and Convolu-
tional Neural Networks, also facilitate recognition of intricate cellular patterns, automating grading, and lessening  dependence 
on subjective assessments.

Supervised systems generally start with image pre-processing, followed by feature extraction, model learning and model vali-
dation  processes which will all increase the diagnostic accuracy.

Automated cellular quantification, observer variation reduction, and the addition of molecular and genomic data are all de-
signed to assist  the pathologist in creating a better grade. Aspects like a shortage of annotated datasets, poor model generaliz-
ability over heterogeneous data  and the penury of robust clinical validation will make a way to but emerging solutions, like 
Generative Adversarial Networks for data augmentation and Explainable AI for model transparency, will open new avenues.
Integrating supervised  learning systems into oncology workflows could change the landscape of personalized cancer care. 
Through improving diagnostic accuracy, process  efficiency, and personalized therapeutic management, these innovations lead 
to better clinical outcomes and may create future opportunities for advances in translational oncology research.
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Introduction
Any diagnosis and prognosis of a cancer grading adds value 
for treatment application and progression forecasting. For a 
long time, however, Tumor grading systems in breast cancer 
have relied on manual assessment of mitotic index, nuclear 
morphology, and glandular structure [1]. While these assess-
ments are important, they are subject to variability both within 
and between observers, resulting in a heavy dependence on the 
pathologists forming the diagnosis. This inherent variability 
reinforces the important of standardized and objective methods 
to cancer grading [2], which predominantly focuses on breast 
cancer; however, these challenges are not limited exclusively 
to this type of cancer.

For instance, within prostate cancer, the Gleason scoring sys-
tem is a well-known system in the grading of tumors but is 
affected by inter observer variability [3]. Furthermore, Glioma 
tumors are graded using features such as cell density yet there 
is still difficulty in differentiating between low and high-grade 
glioma tumors accurately [4,5].

The grade of sarcoma is similarly determined by cellular atyp-
ia, mitotic count, and necrosis. Despite being pivotal in prog-
nostication, it suffers from inter-evaluator variability, thereby 
making standardization of therapeutic approaches challenging 
[6].
Furthermore, evaluation of gastrointestinal tumors is based on 
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grading systems such as the GIST (Gastrointestinal Stromal 
Tumors) system which takes into account factors like the mi-
totic rate as well as tumor size [7,8]. While widely used, such 
methods may still be subject to variability based on subjective 
interpretation. For pancreatic cancer, the evaluation of glan-
dular differentiation relies heavily on the histological grading 
system, which is also hindered by the issues present in observ-
er bias and the complexity of the tissue architecture [9].

Grading in hematological malignancies including lymphomas 
carries added complexity, wherein systems such as the Ann 
Arbor staging and Lugano classification incorporate not only 
histological features, but also radiological findings that may 
be subject to subjective interpretation [10,11]. Additionally, 
melanoma grading includes metrics such as Breslow thickness 
and ulceration status, and minor variations in measurement can 
have a major effect on staging and treatment decisions [12].

It is very clear from these challenges that advanced computa-
tional methods and models need to be employed as adjuncts to 
the standard grading of various cancers [5]. These examples 
highlight the need for more robust and objective tools to assist 
pathologists in tumor grading.

In the last couple of years, the development of supervised 
learning systems has been helpful in solving various grading 
problems. These systems improve the diagnostic of tumours by 
minimising the reliance on subjective evaluations and improv-
ing the turnaround time and also reducing the need to rely on 
subjective evaluations. Furthermore, they offer better consis-
tency across the cases enhancing the integrity and reliability of 
cancer grading [5,13,14].

Paige application (https://paige.ai/) is a good example of such 
technology innovation, it uses AI to help diagnose breast and 
prostate cancers based on biopsy samples. With the help of AI, 
Paige has been able to improve diagnostic processes by detect-
ing certain patterns in tissue samples that might be difficult for 
medical specialists to see [15,16].

Other grading systems, including for gliomas and sarcomas, 
are also utilizing AI models with promise for decreasing vari-
ability and increasing precision in malignancies. We have seen 
the emergence of AI enabled platforms helping in the grading 
of lymphomas and melanoma too, applying image recognition 
and pattern detection, to tackle the complexities in the systems 
[17,18].

The future of oncology looks towards the integration of such 
tools into practice so that oncology becomes more accurate and 
more streamlined in grading of tumours [19,20-22].

Algorithms and Technologies Used
Application of supervised learning algorithms in tumor cell 
quantification has represented a real step forward in computer-
assisted diagnosis. Such algorithms allow analysis of complex 
data, improving the accuracy and efficiency in the classifica-
tion and quantification of cells by exploiting statistical and ma-
chine learning approaches [23-25]. 

Some of the most relevant techniques are analyzed hereinafter:
Support Vector Machines (SVM):
The SVMs are very suitable for small datasets featuring linear 
or nonlinear separations [26].

This makes them suitable for applications where the available 
data are limited, but well labeled. But these algorithms can be-
come ineffective on very large datasets due to computational 
complexity [27].

Random Forest:
Random forests perform well on complex datasets with feature 
selection, enabling interpretability [28].

Each of these trees adds the robustness of the model as a whole 
and consequently lowers the risks of overfitting. Also, there is 
automatic feature prioritization for identifying the most impor-
tant parameters of classification.  However, in this regard, if 
the dataset is not balanced, there will be a risk of overfitting on 
irrelevant features [29].

Convolutional Neural Networks (CNN):
The CNN is particularly suitable for analyses of highly compli-
cated histological images since they can directly learn feature 
hierarchies from raw data [30,31].

The major advantage they bring forth is the ability to iden-
tify complex and subtle cellular patterns without the need for 
manual feature engineering. 

CNNs, in particular, have been proven to outperform in clas-
sifying histological images, which is evident from the work on 
non-small cell lung cancer images using a ResNet-50 network 
that achieved an accuracy of 95%, far superior to traditional 
methods [32,33].

This result highlights their ability to identify complex and 
subtle cellular patterns, distinguishing normal cells from tumor 
cells with high accuracy.  It is always crucial to ensure high 
dataset quality to avoid bias.

Furthermore, the use of advanced architectures such as ResNet 
and EfficientNet has further improved performance on com-
plex datasets, making it possible to identify subtle patterns that 
may be imperceptible to humans [34,35]. 

Supervised learning algorithms have proven very effective in 
several real-world clinical applications. As an example, in the 
grading of prostate cancer, deep learning models, including 
CNNs, have been integrated with the widely accepted Gleason 
scoring system to both decrease inter-observer variability and 
increase both objectivity and workflow efficiency [36]. For ex-
ample, supervised models have also been employed in glioma 
classification, where they help differentiate low-grade from 
high-grade tumors by examining patterns in cell density and 
other histological features, improving prognostic accuracy [5]. 
The examples showcase the impact of machine learning on 
cancer diagnostics, empowering clinicians with accurate and 
actionable data that were otherwise difficult to obtain.

Supervised System Workflow
Common examples include a structured pipeline, typically fol-
lowed for the quantification of tumor cells, divided into several 
phases. 

First of all, it is preprocessing with the aim to enhance im-
age quality by noise reduction, equalization of illumination, 
and segmentation of regions of interest. Advanced techniques, 
which include adaptive shading for illuminating correction, 
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even out the brightness across the sample to offer better visibil-
ity of critical structures at a cellular level [37]. Spatial neural 
network-based filtering further increases image-to-image con-
sistency by diminishing the effects of instrumental variation 
and enhances the accuracy of the analytical work [38].

Next, the process of annotation is performed, and it involves 
creating a labeled dataset with the input of pathological experts. 
Semi-automatic annotation methods, such as Active Learning-
based algorithms, are gaining much popularity due to their 
great ability in reducing the experts' workload while maintain-
ing high accuracy in labeling. In this context, standardization is 
important to minimize discrepancies among experts.

Feature extraction involves identifying relevant features, such 
as cell size, shape, and texture, or learning them from deep 
learning models [39]. 
The feature extraction techniques based on histograms of ori-
entation gradients (HOG) and Gabor texture descriptors can 
be used to complement the deep learning models to enhance 
the ability of the system in distinguishing between normal and 
tumor cells.

Training is considered the heart of the whole workflow, where 
labeled data is actually used for building the predictive model. 
Advanced optimization strategies like AdamW or Ranger sig-
nificantly improved the capability of models to converge fast 
without facing overfitting problems; thus, they generalize on 
new data [40]. 

Finally, the performance of the model is evaluated by valida-
tion with metrics such as accuracy, precision, AUC-ROC, and 
F1-score. Stratified cross-validation is necessary to ensure the 
results are robust and generalizable, meaning that the model 
performs well even on data other than those used in training 
[41].

Impact on Tumor Grading
Supervised systems have demonstrated a significant impact on 
tumor grading. A practical example is the use of Convolutional 
Neural Networks (CNNs) for prostate cancer grading, where a 
supervised model outperformed the average diagnostic accu-
racy of expert pathologists, reducing inter-observer variability 
[42,43]. 
These systems provide diagnostic accuracy through the reduc-
tion of variability between pathologists by automating cellular 
quantification and give objective support to grading, making it 
less subjective. They allow the identification of complex cel-
lular patterns that might be difficult for the human eye to catch 
and allow the creation of heat maps to visualize regions of 
interest, providing extra clinically relevant information. This 
automates the diagnostic process thanks to the use of such sys-
tems, enabling the integration of objective and technological 
elements into a context that was traditionally based on the vi-
sual and subjective experience of the pathologist. As a result, 
supervised systems significantly improve tumor grading by 
automating cellular quantification and reducing inter-observer 
variability. However, their integration into clinical workflows 
presents challenges, such as ensuring compatibility with hos-
pital systems like PACS and RIS, training medical personnel, 
and managing high implementation costs. Open-source and 
cloud-based solutions offer viable alternatives for resource-
limited settings [44-47].

With proper validation by regulatory bodies, these systems can 
be seamlessly incorporated into clinical practice, enhancing di-
agnostic accuracy and patient care.

Prognosis Prediction
Interventions of supervised learning enable one to do mod-
el-specific learning for prognosis. Further study of cellular 
properties and biomarkers, like cell density and proliferation 
in tumorigenesis, promises far higher accuracy in prediction 
by integrating the clinical outcomes and developing models 
based on individual persons [48]. Integrated models compris-
ing a total tissue-wide histological basis as obtained along with 
molecular and genetic bases currently make available all-new 
tools for precision prognosis; further, this has just gotten far-
ther advanced into more precised medicine [49]. 

These innovations find a clear application in supervised learn-
ing models, such as Gene Set Enrichment Analysis (GSEA) 
and other statistical methods that incorporate histological, ge-
nomic, and biomarker data (e.g. HER2, PD-L1). These meth-
ods improve therapy stratification, enhancing prognostication 
in precision medicine [50-52]. By sharing data and using stan-
dardized protocols, multi-institutional models enhance reli-
ability and generalizability, which ultimately advances oncol-
ogy towards more tailored and individual treatment.

Challenges and Limitations
Despite the progress, several challenges still persist.
Annotating data involves so much time and resources that large 
and high-quality datasets are few and far in between [53]. Data 
Augmentation approaches like Generative Adversarial Net-
works (GAN) allow for the generation of new realistic images 
to mitigate such a limitation [54].

Generalization of models is another big challenge, since most 
of the models perform poorly on data from sources different 
from those seen during training. Domain Adaptation tech-
niques may improve the performance of models in heteroge-
neous environments [55].

Clinical validation is the most important step, where rigorous 
large-scale validation needs to be performed before clinical im-
plementation. Multicenter studies with heterogeneous cohorts 
are necessary in order to test the robustness and reliability of 
the systems.

The problem of accessibility in developing countries is because 
of the low condition of the infrastructure and a requirement of 
training among the staff. Investments in low-cost technologies 
and global partnerships could ease their adoption into less priv-
ileged contexts. There are many challenges despite progress.

Most large and high-quality datasets are not available because 
annotation of data is a very time-consuming process and re-
quires a lot of resources. Data Augmentation techniques like 
Generative Adversarial Networks (GAN) generate new images 
that appear realistic [56].

Model generalization is another key challenge because many 
models have poor performance when applied to data from 
sources other than those the model was trained on. Domain 
Adaptation techniques enhance the capability of models to op-
erate in heterogeneous environments.
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